Discrepancies between modeled and observed nocturnal isoprene in an urban environment and the possible causes: A case study in Houston

作者:Diao Lijun; Choi Yunsoo*; Czader Beata; Li Xiangshang; Pan Shuai; Roy Anirban; Souri Amir Hossein; Estes Mark; Jeon Wonbae
来源:Atmospheric Research, 2016, 181: 257-264.
DOI:10.1016/j.atmosres.2016.07.009

摘要

Air quality simulations were conducted using the Community Multiscale Air Quality (CMAQ) model for nocturnal isoprene in September 2013 using the United States Environmental Protection Agency's (EPA's) National Emissions Inventory of 2011 (NEI, 2011). The results were evaluated against measurements collected at eight Texas Commission on Environmental Quality (TCEQ) Automated Gas Chromatographs (AutoGCs) monitoring stations. The comparisons demonstrated two distinctive behaviors: overestimation before midnight (20:00-23:00 p.m. local time) versus underestimation after midnight (00:00-06:00 a.m.). Analyses identify the uncertainties in nitrate radical (NO3) concentration and vertical mixing as the possible minor factors contributing to the underestimation, and the underestimated wind speed as the major factor contributing to the overestimation. Further analysis links isoprene underestimation to the uncertainties in the nocturnal isoprene anthropogenic emissions in the NEI (2011) over industrial areas in Houston. This can be substantiated by the fact that the observed nighttime isoprene concentrations increased when the wind direction veered back from southeast to northeast, placing the stations downwind of industrial facilities. A sensitivity run with adjusted anthropogenic isoprene emissions in the later part of the night (i.e., the emissions were multiplied by the hourly underestimation factors ranging from 3.81 to 14.82) yielded closer isoprene predictions after midnight with slightly improved model mean (0.15 to 0.20 ppb), mean error (-0.10 to -0.04 ppb), mean absolute error (0.18 to 0.15 ppb), root mean squared error (RMSE, 0.27 to 0.25 ppb), and index of agreement (IOA, 0.66 to 0.68). The insignificant improvement was likely due to the uncertainties in the location of the high-peaked anthropogenic emissions. The impacts of the nighttime-adjusted isoprene emissions on the isoprene oxidation products, organic nitrate and ozone, were found to be minimal. This study, however, shows that more in-situ surface nighttime measurement data is critical to constrain the underestimated nocturnal isoprene emissions in Houston.

  • 出版日期2016-11-15