摘要

Acceleration performance is one of important vehicle performance indicators. In order to solve the optimization problem of acceleration performance of hybrid electric vehicle, the full-load acceleration progress is converted into the multi-level decision-making process according to vehicle speeds, and a solution scheme based on dynamic programming is put forward. Then, a model for the novel power-split hybrid vehicle is constructed, and a globally-optimized control strategy is obtained on the Matlab platform. Meanwhile, a dual-motor torque figure is established, in which both the motor speed ratio and the battery power band are defined to analyze the control strategy of full-load acceleration. The vehicle test results of acceleration performance optimization show that one-hundred-kilometer acceleration time after the optimization decreases by 15.7%, which means that the proposed control strategy on the basis of dynamic programming can significantly improve the vehicle acceleration performance.

全文