Debris swarms seen by SMEI

作者:Mizuno Donald R; Price Stephan D; Kraemer Kathleen E*; Kuchar Thomas A; Johnston Janet C
来源:Advances in Space Research, 2012, 49(1): 162-176.
DOI:10.1016/j.asr.2011.09.006

摘要

The large 3 degrees x 60 degrees fields-of-view of the Solar Mass Ejection Imager (SMEI) instruments are oriented on the stabilized Coriolis satellite to image most of the sky each Sun-synchronous orbit. Besides observing coronal mass ejections, the SMEI mission objective, SMEI also has detected a plethora of Earth-orbiting satellites (resident space objects or RSOs) brighter than similar to 8th magnitude at a rate of about 1 per minute. Occasionally, SMEI sees an RSO swarm: a sudden onset of a large number of RSOs, many more than the nominal rate, upto dozens detected in a 4-s frame. These swarms usually last for a few minutes. A sample of six such RSO ensembles is analyzed in this paper in which the distance and the direction of the velocity vector for individual objects are estimated. We present the observational evidence indicating that the swarms must be near-field objects traveling in orbits near that of Coriolis, and that the relatively speeds between the objects and Coriolis are low. Further, analyses indicate that the RSOs are quite close (%26lt;20 m) and are generally moving radially away from the satellite. The predicted encounter geometries for Coriolis passing through or near a small debris cloud is, generally, quite inconsistent with the observations. The most likely explanation consistent with the observations is that SMEI is seeing debris being ejected from the Coriolis spacecraft itself. An analysis of distance and brightness for a subset of the RSOs indicates that the median diameter of the debris particles is similar to 80 mu m.

  • 出版日期2012-1-1