摘要

This article proposes a new closed-form equation to determine the reduction factor for global buckling of concentrically loaded pultruded fiber-reinforced polymer struts based on the Ayrton-Perry formula and observed initial out-of-straightness of pultruded fiber-reinforced polymer members measured by other researchers, which makes the original solution recommended by Eurocode 3 easy to be used to predict the global buckling loads of doubly symmetric pultruded fiber-reinforced polymer members subjected to axial compression. The influence of the geometric imperfections of pultruded fiber-reinforced polymer profiles is considered in this new closed-form equation. Validation of the solution including the parameter of the reduction factor for global buckling of pultruded fiber-reinforced polymer columns is performed by comparison with published experimental evidence. In addition, compared with the five closed-form solutions available in the literature, this solution exhibits higher accuracy in predicting the global buckling capacity of concentrically loaded pultruded fiber-reinforced polymer struts with doubly symmetric cross sections. The solution implemented into the new reduction factor equation for global buckling of pultruded fiber-reinforced polymer members can be conveniently used by structural engineers at the preliminary engineering design stage for accurately assessing the reliability and safety of composite structures under concentric compressive loading.