摘要

This paper is concerned with the mathematical modeling of a severe and common congenital defect called hypoplastic left heart syndrome (HLHS). Surgical approaches are utilized for palliating this heart condition; however, a brain white matter injury called periventricular leukomalacia (PVL) occurs with high prevalence at or around the time of surgery, the exact cause of which is not known presently. Our main goal in this paper is to study the hemodynamic conditions under which HLHS physiology may lead to the occurrence of PVL. A lumped parameter model of the HLHS circulation has been developed integrating diffusion modeling of oxygen and carbon dioxide concentrations in order to study hemodynamic variables such as pressure, flow, and blood gas concentration. Results presented include calculations of blood pressures and flow rates in different parts of the circulation. Simulations also show changes in the ratio of pulmonary to systemic blood flow rates when the sizes of the patent ductus arteriosus and atrial septal defect are varied. These changes lead to unbalanced blood circulations and, when combined with low oxygen and carbon dioxide concentrations in arteries, result in poor oxygen delivery to the brain. We stipulate that PVL occurs as a consequence.

  • 出版日期2015