摘要

Using an array of m x n nonlinear ring resonators (m = 1, 3, 5, and n = 1, 2, 3) coupled to the upper arm of a Mach-Zehnder interferometer (MZI), we have proposed an all-optical switch structure. Using a 5 x 3 array, we have shown the possibility of designing an all-optical switching device with a threshold intensity as low as 15 mW/m(2) and switching window of similar to 35 ps. While using m x 1 arrays, we have achieved switching windows smaller than 10 ps, at the expense of higher switching thresholds, ranging from 37 to 55 mW/m(2). The whole structure is based on a square lattice photonic crystal of lattice constant a = 600 nm, formed by rods of radius r = 90 nm in an air background. The linear rods' refractive index is taken to be the same as that of Si0.75Ge0.25; i.e., n(r) = 3.6, whereas the nonlinear rod's refractive index and Kerr index parameter are taken to be n(0) = 1.4 and n(2) = 10(-14)m(2)/W. The center wavelength at which the nonlinear rings are designed to make the resonance is taken to be lambda(0) = 1550 nm in free space.

  • 出版日期2008-9-20