摘要

Aerosol water content plays an important role in aqueous phase reactions, in controlling visibility, and in cloud formation processes. One way to quantify aerosol water content is to measure hygroscopic growth using the hygroscopicity tandem differential mobility analyzer (HTDMA) technique. However, the HTDMA technique becomes less reliable at relative humidity (RH) %26gt;90% due to the difficulty of controlling temperature and RH inside the second DMA. For this study, we have designed and implemented a new HTDMA system with improved temperature and RH control. Temperature stability in the second DMA was achieved to 0.02 degrees C tolerance by implementing active control using thermoelectric heat exchangers and PID control loops. The DMA size resolution was increased by operating high-flow DMA columns at a sheath:sample flow ratio of 15:0.5. This improved size resolution allowed for improving the accuracy of the RH sensors by interspersing ammonium sulfate reference scans at high frequency. We present growth factor data for pure compounds at RH up to 99% and compare the data to theoretical values and to available bulk water activity data. With this HTDMA instrument and method, the osmotic coefficients of spherical, nonvolatile aerosols of known composition between 30 and 200nm in diameter can be determined within +/- 20%. We expect that data from this instrument will lead to an improvement of aerosol water content models by contributing to the understanding of aerosol water uptake at high RH.

  • 出版日期2013-9-1