摘要

The anisol, thiophenol, and thioanisol by 'bare' FeO+ are examined by using Fourier transform-ion cyclotron resonance (FT-ICR) and tandem mass-spectrometry. Reaction mechanisms are derived on the basis of isotope-labeling experiments, MS/MS studies, and comparison with structural isomers, that is ions formed by independent routes. The chemistry of all substrates is determined by the functional groups, whereas reactions typical of unsubstituted benzene with FeO+ are suppressed. For phenol and thiophenol, four-membered metallacycles are obtained concomitant with a regioselective loss of water, which involves the O atom from the FeO+ entity and hydrogen atoms originating from the functional group and from the ortho position of the ring. C-H bond cleavage of the methoxy group (k(H)/k(D) = 2.0) is rate-contributing for the degradation of metastable anisol/FeO+, which is featured by highly regioselective losses of H2O, HCO, H2CO, and [C,H-2,O-2]. In the oxidation of thioanisol, two different C-H bond activation mechanisms are operating, resulting in the elimination of [Fe,H,O,S] concomitant with the formation of the benzyl cation (k(H)/k(D) = 4.7), and loss of water (k(H)/k(D) = 2.5). The reactions of independently generated, formal S- and C-oxidation intermediates of thioanisol indicate the occurrence of extensive structural isomerizations prior to dissociation. For anisol and thioanisol, analogies and differences between oxidation reactions catalyzed by the enzyme cytochrome P-450 in the condensed phase and those observed for the gas-phase model FeO+ are discussed.

  • 出版日期2000-1