摘要

A facile, general, and highly efficient approach to obtain azobenzene (azo)-containing molecularly imprinted polymer (MIP) microspheres with both photo- and thermoresponsive template binding properties in pure aqueous media is described for the first time, which involves the first synthesis of "living" azo-containing MIP microspheres with surface-immobilized alkyl halide groups via atom transfer radical precipitation polymerization (ATRPP) and their subsequent modification via surface-initiated atom transfer radical polymerization (ATRP) of N-isopropylacrylamide (NIPAAm). The successful grafting of poly(NIPAAm) (PNIPAAm) brushes onto the obtained MIP microspheres was confirmed by FT-IR, SEM, water dispersion stability and static contact angle studies, and template binding experiments. The introduction of PNIPAAm brushes onto the azo-containing MIP microspheres significantly improved their surface hydrophilicity and imparted thermoresponsive properties to them, leading to their pure water-compatible and thermoresponsive template binding properties. In addition, the binding affinity of the imprinted sites in the grafted azo-containing MIP microspheres was found to be photoresponsive toward the template in pure water, and this photoregulation process proved to be highly repeatable under photoswitching conditions.