Development of novel mesoporous nanomatrix-supported lipid bilayers for oral sustained delivery of the water-insoluble drug, lovastatin

作者:Zhang, Yanzhuo*; Zhang, Heran; Che, Erxi; Zhang, Lihua; Han, Jin; Yang, Yihua; Wang, Siling; Zhang, Miao; Gao, Cunqiang
来源:Colloids and Surfaces B: Biointerfaces , 2015, 128: 77-85.
DOI:10.1016/j.colsurfb.2015.02.021

摘要

The purpose of this study was to investigate the effect of a core/shell structured nanocomposite, mesoporous nanomatrix-supported lipid bilayer (MN-SLB), as an oral drug nanocarrier, on the dissolution behavior and in vivo absorption of a water-insoluble drug, lovastatin (LOV). The formulation strategy was based on the use of drug-loaded mesoporous silica as the core for the fusion of liposomes. Field emission scanning electron microscopy (FESEM), cryogenic transmission electron microscopy (Cryo-TEM) and nitrogen adsorption were used to systematically characterize the drug carrier and drug-loaded MN-SLB formulation, confirming the successful inclusion of LOV into the nano-pores of MN-SLB. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) confirmed that the incorporated drug in the carrier was in an amorphous state. An in vitro dissolution study showed that LOV-loaded MN-SLB exhibited a sustained drug release behavior. Compared with the LOV-loaded mesoporous silica particles, LOV-loaded MN-SLB markedly suppressed the burst release. Furthermore, the pharmacokinetics and relative bioavailability of the LOV-loaded MN-SLB formulation was studied in beagle dogs after oral administration and using a commercially available immediate release formulation (Sandoz Lovastatin (R)) as a reference. It was found that the relative bioavailability of LOV and LOV beta-hydroxy acid (LOVA) for the LOV-loaded MN-SLB formulation was 207.2% and 192.1%, respectively. In addition, MN-SLB exhibited negligible toxicity against Caco-2 and HT-29 cells in cytotoxicity assays. The results of this study indicate that the MN-SLB nanocomposite is a promising candidate as a novel oral drug delivery nanovehicle for controlling the dissolution rate and improving the oral absorption of water-insoluble drugs.