摘要

Nonlinear dynamic characteristics of shape memory alloy (SMA) intravascular stent under radial stochastic loads were studied in this paper. Von de Pol item was improved to interpret the hysteretic phenomena of SMA, and the nonlinear dynamic model of SMA intravascular stent under radial stochastic loads was developed. The conditions of stochastic stability of the system were obtained in singular boundary theory. The steady-state probability density function of the dynamic response of the system was given, and the stochastic Hopf bifurcation characteristics of the system were analyzed. Theoretical analysis and numerical simulation show that the stability of the trivial solution varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process, which can cause stent fracture or loss. The results of this paper are helpful to application of SMA intravascular stent in biomedical engineering fields.

全文