摘要

We present a three-dimensional constitutive model for NiTi polycrystalline shape memory alloys exhibiting transformations between three solid phases (austenite, R-phase, martensite). The full modelling sequence' comprised of formulation of modelling assumptions, construction of the model, mathematical analysis and numerical implementation and validation is presented. Namely, by formulating micromechanics-inspired modelling assumptions we concentrate on describing the dissipation mechanism: a refined form of this description makes our model especially useful for complex loading paths. We then embed the model into the so-called energetic framework (extended to our case) while taking advantage of describing the dissipation mechanism through the so-called dissipation distance. We prove the existence of energetic solutions to our model by a backward Euler scheme. This is then implemented into finite element software, and numerical simulations compared with experiments are also presented.

  • 出版日期2016-3