A synonymous codon variant in two patients with autosomal recessive bestrophinopathy alters in vitro splicing of BEST1

作者:Davidson Alice E; Sergouniotis Panagiotis I; Burgess Mullan Rosemary; Hart Holden Nichola; Low Sancy; Foster Paul J; Manson Forbes D C; Black Graeme C M; Webster Andrew R*
来源:Molecular Vision, 2010, 16(313-19): 2916-2922.

摘要

Purpose: Autosomal recessive bestrophinopathy (ARB) is a newly defined retinal dystrophy caused by biallelic mutations in bestrophin-1 (BEST1) and is hypothesized to represent the null bestrophin-1 phenotype in humans. The aim was to determine whether a synonymous BEST1 variant, c.102C>T, identified in two unrelated ARB patients, alters pre-mRNA splicing of the gene. Additionally a detailed phenotypic characterization of this distinctive condition is presented for both patients.
Methods: BEST1 was analyzed by direct sequencing. Patients underwent standard ophthalmic assessment. In silico and in vitro analysis using a minigene system was performed to assess whether a synonymous variant identified, c.102C>T p.Gly34Gly, alters pre-mRNA splicing of BEST1.
Results: Both ARB patients harbored either proven (patient 1; c.102C>T p.Gly34Gly and c.572T>C p.Leu191Pro) or presumed (patient 2; c.102C>T p.Gly34Gly and c.1470_1471delCA, p.His490GlnfsX24) biallelic mutations in BEST1 and were found to have phenotypes consistent with ARB. In vitro analysis of the synonymous variant, c.102C>T p.Gly34Gly, demonstrated it to introduce a cryptic splice donor site 52 nucleotides upstream of the actual splice donor site.
Conclusions: The novel BEST1 variant identified, c.102C>T p.Gly34Gly, alters pre-mRNA splicing in vitro and is potentially pathogenic. In vivo this splicing variant is predicted to lead to the production of an mRNA transcript with a premature termination codon (p.Glu35TrpfsX11) that is predicted to be degraded by NMD.

  • 出版日期2010-12-31