摘要

Functionally Graded Materials (FGMs) are being used in an ever-expanding set of applications. For better applications, an analytical methodology using averaging technique of composites is developed to describe the thermo-elastic and thermo-elastoplastic behaviors of a three-layered FGM system subjected to thermal loading Solutions using averaging technique of composites for the stress distributions in a generic FGM system subjected to arbitrary temperature loading conditions are presented. The power-law strain hardening behaviour is assumed for the FGM metallic phase and the stress of the metallic phase are calculated to judge the plastic in this work The stress distributions within the FGM systems are compared with accurate numerical solutions obtained from finite element analyses and good agreement is found.