摘要

For various human healthcare and industrial applications, endowing surfaces with the capability to not only efficiently kill bacteria but also release dead bacteria in a rapid and repeatable fashion is a promising but challenging effort. In this work, the synergistic effects of combining stimuli-responsive polymers and nanomaterials with unique topographies to achieve smart antibacterial surfaces with on-demand switchable functionalities are explored. Silicon nanowire arrays are modified with a pH-responsive polymer, poly(methacrylic acid), which serves as both a dynamic reservoir for the controllable loading and release of a natural antimicrobial lysozyme and a self-cleaning platform for the release of dead bacteria and the reloading of new lysozyme for repeatable applications. The functionality of the surface can be simply switched via step-wise modification of the environmental pH and can be effectively maintained after several kill-release cycles. These results offer a new methodology for the engineering of surfaces with switchable functionalities for a variety of practical applications in the biomedical and biotechnology fields.