摘要

The mechanisms of dislocation nucleation on a nickel (Ni) (001) surface under nanoindentation behaviours are investigated using molecular dynamics simulation. The characteristic mechanisms include the molecular models of a thermal layer (TL) and thermal with a free layer (TFL), multi-step load/unload cycles, tilt angles and shapes of the indenter, and slip vectors. The model of a TL has higher reaction force than a TFL. The maximum forces of nanoindentation decrease with increasing time of the multi-step load/unload cycle. The indenter with the tilt angle has larger force to act on the molecular model than the indenter along the normal direction. The effect of the indentation shape is presented such that the conical tip has larger load force to act on the molecular model. The defects along Shockley partials on the (111) plane are produced during nanoindentation involving nucleation, glide and slip.

  • 出版日期2010