摘要

In the present paper, a core-shell structured inorganic-organic hybrid nanocomposite for Hg(II) sensing and removal was designed and fabricated, where the core was composed of superparamagnetic Fe3O4 and the shell consisted of molecular silica sieve MCM-41. A rhodamine derived probe was grafted onto the backbone of MCM-41 through a silane coupling reagent to control its loading content. This probe functionalized core-shell structure was confirmed and characterized by XRD analysis, electron microscopy images, IR spectra, thermogravimetry and N-2 adsorption/desorption isotherms. It was found that the emission of this composite increased with increasing Hg(II) concentrations but was immune to other metal ions, showing good selectivity and high sensitivity towards Hg(II) ions. A linear Stern-Volmer curve was observed with short response time. In addition, this composite possessed good Hg(II)-removing and recycling performance.