摘要

The total of the gas in shale gas reservoirs is sourced from a combination of free, adsorbed and dissolved/diffused gas. The mechanisms of production of free and adsorbed gas have been studied by numerous researchers. In contrast, the evolution of the dissolved gas and its contribution to the total gas production is not well understood. In this study we model the effect of pore micro-structure in organic matter (OM) on the rate of gas production in shale reservoirs. In this regard, first, we solve the gas-in-solid diffusion equation over a general doubly connected spatial domain with external Neumann and internal Dirichlet boundary conditions. The obtained solution is applied systematically to multi-pore porous OM domains and then the effect of pore morphology on the rate of gas production is studied. Our model results show that pore geometry has a slight effect on the gas diffusion process, while total organic carbon, and OM porosity, pore size distribution and specific surface area, are dominant parameters. An abundance of very small pores in OM tremendously increases the diffuse gas contribution in the total gas reserve and production.

  • 出版日期2017-5-25