摘要

Polychlorinated biphenyls (PCBs) are a group of widespread contaminants, and accumulation of PCBs has been observed in corals in the field. However, the toxic effects of PCBs on corals have not been investigated. In this study, we tested short and long term toxicity of Aroclor 1254, a commercial PCB mixture, on the scleractinian coral Stylophora pistillata. Coral nubbins were incubated in either control seawater or seawater dosed with PCBs (approximately 300 ng/L) for 96 h. The effect of PCB exposure on coral gene expression at 4 h post exposure was tested with the suppression subtractive hybridization (SSH) and quantitative PCR methods. Photosystem II activity of the zooxanthellae was measured at 96 h. After the exposure, nubbins were moved into clean seawater and their survival and growth were observed for another 50 days. All nubbins survived during the exposure and the following 50-d recovery period. Photosystem II activity and coral growth were not affected by PCB exposure in this study. Fifty-four clones were sequenced for gene expression analysis, and 15% of these sequences were identified, including genes involved in general stress response, peptide metabolism, cellular receptor, cytoskeleton organization, membrane trafficking, and oxidative stress response. However, the quantitative PCR did not show significant difference in the five selected genes. In conclusion, acute exposure of S. pistillata to Aroclor 1254 at 300 ng/L did not affect coral survival, photosynthesis or growth but may alter the expression of certain genes involved in various important cellular functions. The nubbin technique proved to be an efficient approach to simultaneously characterize the impact of PCBs on the corals at multiple biological levels.