摘要

Unknown input excitation and local damages universally coexist in a practical situation Therefore, in this paper a structural damage identification method based on the transmissibility concept in state space domain is proposed without the need for input measurements. On the basis of the transformation matrix which is computed using the system Markov parameters in state space, the relationship between two different sets of acceleration response measurements can be formulated under the same input excitation. A sensitivity based model updating approach is applied to identify the local damages by minimizing the difference between the measured response and the reconstructed response. The sensitivity of the dynamic acceleration response with respect to the elemental stiffness factors is derived analytically in the state space domain, which accelerates the process of damage identification. A numerical cantilever beam is employed to validate that the variation of structural parameters induced by the local damages can be accurately and effectively identified without the input excitation information by the proposed method even with measurement noise considered. A laboratory Lest is further carried out to verify the proposed structural damage identification method based on the response reconstruction technique.