摘要

The adsorption of three dextrin-based polymers, regular wheat dextrin (Dextrin TV), phenyl succinate dextrin (PS Dextrin), and styrene oxide dextrin (SO Dextrin) on a model hydrophobic surface, consisting of a mixed alkanethiol layer on gold, has been characterized using the quartz crystal microbalance with dissipation monitoring (QCM-D). The three polymers exhibited varying affinities and capacity for adsorption on the hydrophobic substrate. Atomic force microscope (AFM) imaging of the polymer layers indicates that all three polymers fully cover the surface. The effect of the three polymers on the static contact angle of the surface was studied using captive bubble contact angle measurements. The three polymers were seen to reduce the receding contact angle by similar amounts (approximately 14 degrees) in spite of having varying adsorbed amounts and differences in adsorbed layer water content. Although no differences were observed in the ability of the polymers to reduce the static contact angle, measurements of the dynamic contact angle between a rising air bubble and the polymer covered substrate yielded stark differences between the polymers, with one polymer (SO Dextrin) slowing the dewetting by an order of magnitude more than the other two polymers. The differences in dewetting behavior correlate with the adsorbed layer characteristics determined by QCM-D and AFM. The role of the dynamic and static contact angle in the performance of a polymer as depressant is discussed.

  • 出版日期2010-5-15