摘要

We present an assessment and enhancement of the hybrid two-level large-eddy simulation method (A.G. Gungor and S. Menon, A new two-scale model for large eddy simulation of wall-bounded flows, Prog. Aerosp. Sci. 46 (2010), pp. 28-45), a multi-scale formulation for simulation of high Reynolds number wall-bounded turbulent flows. The assessment of the method is performed by examining role of static and dynamic blending functions used to perform hybridisation of two-level simulation (K. Kemenov and S. Menon, Explicit small-scale velocity simulation for high-Re turbulent flows, J. Comput. Phys. 220 (2006), pp. 290-311; K. Kemenov and S. Menon, Explicit small-scale velocity simulation for high-Re turbulent flows. Part 2: Non-homogeneous flows, J. Comput. Phys. 222 (2007), pp. 673-701) and large-eddy simulation methods. The sensitivity of first- and second-order turbulence statistics to the type of blending functions is investigated by simulating a fully developed turbulent flow in a channel at a friction Reynolds number Re = 395 and comparing the results with those obtained using a direct numerical simulation. The first-order statistics do not show any significant differences for different blending functions, but the second-order statistics show some minor differences. The dynamic evaluation of the hybrid region and the blending function is necessary for non-equilibrium and complex flows where use of a static blending function can lead to inaccurate results. We propose two criteria for the dynamic evaluation; first evaluates extent of the hybrid region based on the subgrid turbulent kinetic energy and the second estimates the blending function based on a characteristic length scale. The computational efficiency of the method is enhanced by incorporating a hybrid programming paradigm where a standard domain decomposition by the message-passing-interface library is combined with the open multi-processing based parallelisation. A further enhancement of the method is achieved by incorporating a closure model for the unclosed hybrid terms in the governing equations, which appear due to hybridisation of two-level- and large-eddy-simulation methods. The model is based on an order of magnitude approximation and a preliminary assessment of the model shows improvement of turbulence statistics when used to simulate turbulent flow in a periodic channel. The assessment and improvements to the multi-scale method make it more suitable for simulation of practical wall-bounded turbulent flows at higher Reynolds number than a conventional large-eddy simulation. This is demonstrated by simulating two representative cases; turbulent flow at high Reynolds number in a periodic channel and flow over a bump placed on the lower surface of a channel, where a relatively coarser computational grid is found to be sufficient for reasonably accurate results.

  • 出版日期2013-9-1

全文