Activity-dependent dephosphorylation of paxillin contributed to nociceptive plasticity in spinal cord dorsal horn

作者:Wang, Xin-Tai; Zheng, Rui; Suo, Zhan-Wei; Liu, Yan-Ni; Zhang, Zi-Yang; Ma, Zheng-An; Xue, Ye; Xue, Man; Yang, Xian; Hu, Xiao-Dong*
来源:Pain, 2016, 157(3): 652-665.
DOI:10.1097/j.pain.0000000000000415

摘要

The enzymatic activity of protein tyrosine kinase Src is subjected to the regulation by C-terminal Src kinase (CSK) and protein tyrosine phosphatases (PTPs). Aberrant Src activation in the spinal cord dorsal horn is pivotal for the induction and development of nociceptive behavioral sensitization. In this study, we found that paxillin, one of the well-characterized cell adhesion components involved in cell migration and survival, integrated CSK and PTPs' signaling to regulate Src-dependent nociceptive plasticity. Paxillin localized at excitatory glutamatergic synapses in the spinal dorsal horn of mice, and the phosphorylation of Tyr118 on paxillin was necessary to associate with and target CSK at synapses. After peripheral tissue injury, the enhanced neuronal activity stimulated N-methyl-D-aspartate (NMDA) subtype glutamate receptors, which initiated PTPs' signaling to catalyze Tyr118 dephosphorylation. The reduced Tyr118 phosphorylation disrupted paxillin interaction with CSK, leading to the dispersal of CSK out of synapses. With the loss of CSK-mediated inhibition, Src activity was persistently increased. The active Src potentiated the synaptic transmission specifically mediated by GluN2B subunit-containing NMDA receptors. The active Src also facilitated the induction of long-term potentiation of C fiber-evoked field potentials and exaggerated painful responses. In complete Freund's adjuvant-injected mice, viral expression of phosphomimicking paxillin mutant to resume CSK synaptic localization repressed Src hyperactivity. Meanwhile, this phosphomimicking paxillin mutant blunted NMDA receptor-mediated synaptic transmission and alleviated chronic inflammatory pain. These data showed that PTPs-mediated dephosphorylation of paxillin at Tyr118 was involved in the modification of nociceptive plasticity through CSK-Src signaling.