Protonated Forms of Monoclinic Zirconia: A Theoretical Study

作者:Mantz Yves A*; Gemmen Randall S
来源:Journal of Physical Chemistry C, 2010, 114(17): 8014-8025.
DOI:10.1021/jp810601j

摘要

In various materials applications of zirconia, protonated forms of monoclinic zirconia may be formed, motivating their study within the framework of density-functional theory. Using the HCTH/120 exchange-correlation functional, the equations of state of yttria and of the three low-pressure zirconia polymorphs are computed, to verify our approach. Next, the favored charge state of a hydrogen atom in monoclinic zirconia is shown to be positive for all Fermi-level energies in the band gap, by the computation of defect formation energies. This result is consistent with a single previous theoretical prediction at midgap as well as muonium spectroscopy experiments. For the formally positively (+1e) charged system of a proton in monoclinic zirconia (with a homogeneous neutralizing background charge density implicitly included), modeled using up to a 3 x 3 x 3 arrangement of unit cells, different stable and metastable structures are identified. They are similar to those structures previously proposed for the neutral system of hydrogen-doped monoclinic zirconia, at a similar level of theory. As predicted using the HCTH/120 functional, the lowest energy structure of the proton bonded to one of the two available oxygen atom types, O1, is favored by 0.39 eV compared to that of the proton bonded to O2. The rate of proton transfer between O1 ions is slower than that for hydrogen-doped monoclinic zirconia, whose transition-state structures may be lowered in energy by the extra electron.

  • 出版日期2010-5-6