摘要

A comprehensive study of the two sub-steps composite implicit time integration scheme for the structural dynamics is presented in this paper. A framework is proposed for the convergence accuracy analysis of the generalized composite scheme. The local truncation errors of the acceleration, velocity, and displacement are evaluated in a rigorous procedure. The presented and proved accuracy condition enables the displacement, velocity, and acceleration achieving second-order accuracy simultaneously, which avoids the drawback that the acceleration accuracy may not reach second order. The different influences of numerical frequencies and time step on the accuracy of displacement, velocity, and acceleration are clarified. The numerical dissipation and dispersion and the initial magnitude errors are investigated physically, which measure the errors from the algorithmic amplification matrix's eigenvalues and eigenvectors, respectively. The load and physically undamped/damped cases are naturally accounted. An optimal algorithm-Bathe composite method ( Bathe and Baig, 2005; Bathe, 2007; Bathe and Noh, 2012) is revealed with unconditional stability, no overshooting in displacement, velocity, and acceleration, and excellent performance compared with many other algorithms. The proposed framework also can be used for accuracy analysis and design of other multi-sub-steps composite schemes and single-step methods under physical damping and/or loading.