摘要

Valproic acid (VPA) has been shown to cause neural tube defects in humans and mice, but its mechanism of action has not been elucidated. We hypothesize that alterations in embryonic antioxidant status and Hoxa2 gene expression play an important role in VPA-induced teratogenesis. A whole embryo culture system was applied to explore the effects of VPA on total glutathione, on glutathione in its oxidized (GSSG) and reduced (GSH) forms [GSSG/GSH ratio] and on Hoxa2 expression in cultured CD-1 mouse embryos during their critical period of organogenesis. Our results show that VPA can (1) induce embryo malformations including neural tube defects, abnormal flexion, yolk sac circulation defects, somite defects, and craniofacial deformities such as fusion of the first and second arches, and (2) alter glutathione homeostasis of embryos through an increase in embryonic GSSG/GSH ratio and a decrease in total GSH content in embryos. Western blot analysis and quantitative real-time RT-PCR show that VPA can inhibit Hoxa2 expression in cultured embryos at both the protein and mRNA level, respectively. The presence of ascorbic acid in the culture media was effective in protecting embryos against oxidative stress induced by VPA and prevented VPA-induced inhibition of Hoxa2 gene expression. Hoxa2 null mutant embryos do not exhibit altered glutathione homeostasis, indicating that inhibition of Hoxa2 is downstream of VPA-induced oxidative stress. These results are first to suggest VPA may, in part, exert its teratogenicity through alteration of the embryonic antioxidant status and inhibition of Hoxa2 gene expression and that ascorbic acid can protect embryos from VPA-induced oxidative stress.

  • 出版日期2010-1
  • 单位Saskatoon; Saskatchewan; 兰州大学