A novel bacterial foraging optimization algorithm for feature selection

作者:Chen, Yu-Peng; Li, Ying; Wang, Gang*; Zheng, Yue-Feng; Xu, Qian; Fan, Jia-Hao; Cui, Xue-Ting
来源:Expert Systems with Applications, 2017, 83: 1-17.
DOI:10.1016/j.eswa.2017.04.019

摘要

Bacterial foraging optimization (BFO) algorithm is a new swarming intelligent method, which has a satisfactory performance in solving the continuous optimization problem based on the chemotaxis, swarming, reproduction and elimination-dispersal steps. However, BFO algorithm is rarely used to deal with feature selection problem. In this paper, we propose two novel BFO algorithms, which are named as adaptive chemotaxis bacterial foraging optimization algorithm (ACBFO) and improved swarming and elimination dispersal bacterial foraging optimization algorithm (ISEDBFO) respectively. Two improvements are presented in ACBFO. On the one hand, in order to solve the discrete problem, data structure of each bacterium is redefined to establish the mapping relationship between the bacterium and the feature subset. On the other hand, an adaptive method for evaluating the importance of features is designed. Therefore the primary features in feature subset are preserved. ISEDBFO is proposed based on ACBFO. ISEDBFO algorithm also includes two modifications. First, with the aim of describing the nature of cell to cell attraction-repulsion relationship more accurately, swarming representation is improved by means of introducing the hyperbolic tangent function. Second, in order to retain the primary features of eliminated bacteria, roulette technique is applied to the elimination-dispersal phase. In this study, ACBFO and ISEDBFO are tested with 10 public data sets of UCI. The performance of the proposed methods is compared with particle swarm optimization based, genetic algorithm based, simulated annealing based, ant lion optimization based, binary bat algorithm based and cuckoo search based approaches. The experimental results demonstrate that the average classification accuracy of the proposed algorithms is nearly 3 percentage points higher than other tested methods. Furthermore, the improved algorithms reduce the length of the feature subset by almost 3 in comparison to other methods. In addition, the modified methods achieve excellent performance on wilcoxon signed-rank test and sensitivity-specificity test. In conclusion, the novel BFO algorithms can provide important support for the expert and intelligent systems.