摘要

Retinal pigment epithelial (RPE) cell integrity is critical for the survival of photoreceptor cells. Bcl-x(L) is a major anti-apoptotic Bcl-2 protein required for RPE cell survival, and phosphorylation of Bcl-x(L) at residue Ser-62 renders this protein pro-apoptotic. In this study, we identify serine/threonine protein phosphatase 2A (PP2A) as a key regulator of Bcl-x(L) phosphorylation at residue Ser-62 in ARPE-19 cells, a spontaneously arising RPE cell line in which Bcl-x(L) is highly expressed. We found that either PP2A inhibitor okadaic acid or depletion of catalytic subunit alpha of PP2A (PP2A/C alpha) by small interfering RNA enhanced Bcl-x(L) phosphorylation when activated with hydrogen peroxide and tumor necrosis factor alpha-induced oxidative stress. Disruption of PP2A/C alpha exacerbated oxidative stress-induced apoptosis. PP2A/C alpha colocalized and interacted with S62Bcl-x(L) in cells stressed with H2O2/tumor necrosis factor alpha. By contrast, the omega-3 fatty acid docosahexaenoic acid derivative, neuroprotectin D1 (NPD1), a potent activator of survival signaling, down-regulated oxidative stress-induced phosphorylation of Bcl-x(L) by increasing protein phosphatase activity. NPD1 also attenuated the oxidative stress-induced apoptosis by knockdown of PP2A/C alpha and increased the association of PP2A/C alpha with S62Bcl-x(L) as well as total Bcl-x(L). NPD1 also enhanced the heterodimerization of Bcl-x(L) with its counterpart, pro-apoptotic protein Bax. Thus, NPD1 modulates the activation of this Bcl-2 family protein by dephosphorylating in a PP2A-dependent manner, suggesting a coordinated, NPD1-mediated regulation of cell survival in response to oxidative stress.

  • 出版日期2010-6-11