Black hole formation from the gravitational collapse of a nonspherical network of structures

作者:Delgado Gaspar Ismael; Carlos Hidalgo Juan; Sussman Roberto A; Quiros Israel*
来源:PHYSICAL REVIEW D, 2018, 97(10): 104029.
DOI:10.1103/PhysRevD.97.104029

摘要

We examine the gravitational collapse and black hole formation of multiple monospherical configurations constructed from Szekeres dust models with positive spatial curvature that smoothly match to a Schwarzschild exterior. These configurations are made of an almost spherical central core region surrounded by a network of "pancake-like" overdensities and voids with spatial positions prescribed through standard initial conditions. We show that a full collapse into a focusing singularity, without shell crossings appearing before the formation of an apparent horizon, is not possible unless the full configuration becomes exactly or almost spherical. Seeking for black hole formation, we demand that shell crossings are covered by the apparent horizon. This requires very special fine-tuned initial conditions that impose very strong and unrealistic constraints on the total black hole mass and full collapse time. As a consequence, monospherical nonrotating dust sources cannot furnish even minimally realistic toy models of black hole formation at astrophysical scales: demanding realistic collapse time scales yields huge unrealistic black hole masses, while simulations of typical astrophysical black hole masses collapse in unrealistically small times. We note, however, that the resulting time-mass constraint is compatible with early Universe models of primordial black hole formation, suitable in early dust-like environments. Finally, we argue that the shell crossings appearing when monospherical dust structures collapse are an indicator that such structures do not form galactic mass black holes but virialize into stable stationary objects.

  • 出版日期2018-5-18