摘要

Many manufacturing processes can induce residual stresses in produced components. These residual stresses influence the mean stress during cyclic loading. The initial residual stresses induced during manufacturing change during fatigue damage. This paper presents a research on the change of residual stress distribution during fatigue crack propagation; the research predicts crack propagation by considering residual stress. An analysis approach for the change in residual stress distribution is established according to the diffusion theory of cavity, which is also used to investigate cracks with different orientations. Experiments are conducted to verify the prediction results of residual stress. A probability density function based on Weibull distribution is established to evaluate the accuracy of predicted residual stress. The influence of residual stress on fatigue crack propagation is considered the effective stress intensity factor range, which is calculated under the combined stress field of applied stress and residual stress. An analysis model of crack propagation is established. Furthermore, the model of crack propagation is used to estimate the velocity of crack propagation for the cases, same as the cases of residual stress prediction. The case studies show that the results are basically identical with the experimental results, indicating that the proposed approach is acceptable.