摘要

Building type information is crucial to many urban studies, including fine-resolution population estimation, urban planning, and management. Although scientists have developed many methods to extract buildings via remote sensing data, only a limited number of them focus on further classification of the extracted results. This paper presents a novel building type classification scheme based on the integration of building height information from LiDAR, textural, spectral, and geometric information from high-resolution remote sensing images, and super-object information from the integrated dataset. Building height information is firstly extracted from LiDAR point clouds using a progressive morphological filter and then combined with high-resolution images for object-oriented segmentation. Multi-resolution segmentation of the combined image is performed to collect super-object information, which provides more information for classification in the next step. Finally, the segmentation results, as well as their super-object information, are inputted into the random forest classifier to obtain building type classification results. The classification scheme proposed in this study is tested through applications in two urban village areas, a type of slum-like land use characterized by dense buildings of different types, heights, and sizes, in Guangzhou, China. Segment level classification of the study area and validation area reached accuracies of 80.02% and 76.85%, respectively, while the building-level results reached accuracies of 98.15% and 87.50%, respectively. The results indicate that the proposed building type classification scheme has great potential for application in areas with multiple building types and complex backgrounds. This study also proves that both building height information and super-object information play important roles in building type classification. More accurate results could be obtained by incorporating building height information and super-object information and using the random forest classifier.