Nanometer-scale immobilization of polysaccharides on hydrophobic polymer plates in supercritical fluoroform/water emulsions

作者:Mori Toshiaki; Sekine Yoshimi; Hasegawa Mirei; Okahata Yoshio*
来源:Biomacromolecules, 2007, 8(9): 2815-2820.
DOI:10.1021/bm7005467

摘要

Hydrophilic polysaccharides such as dextran and hyaluronan were immobilized on a hydrophobic polystyrene (PSt) plate by a nanometer-scale surface penetration method in the emulsion of aqueous solutions in supercritical fluoroform (scCHF(3)) Since a supercritical fluid has high diffusiveness, water emulsions of polysaccharides can penetrate into the polymer surface. Dextran was surface-penetrated by two different methods: (1) the penetration of sucrose as a glucose donor and then the enzymatic polymerization to dextran near the surface catalyzed by dextransucrase, and (2) the direct penetration of dextran polymer into the PSt plate. The contact angle for water of the dextran-penetrated PSt plate was decreased to 78 degrees from 95 degrees of the untreated plate. The surface coverage and the penetration depth of polysaccharides could be obtained to be 10-30% and 10-20 nm, respectively, by X-ray photoelectron spectroscopy. These values could be controlled by the pressure of scCHF(3). The transparency of the PSt dish did not change after the dextran penetration. Dextrans on the PSt plate could be elongated enzymatically by dextransucrase in the presence of sucrose as a glucose donor, and be detected by the enzyme-linked biotin-avidin assay. When anionic hyaluronan was surface-penetrated on the PSt plate instead of the neutral dextran, the plate showed the specific adhesion for human T-cells having hyaluronan receptors.

  • 出版日期2007-9