摘要

The ground state binding energies of donor impurities in strained [ 0001]-oriented wurtzite GaN/AlxGa1-xN asymmetric double quantum wells are investigated using a variational method combined with numerical computation. The built-in electric field due to the spontaneous and strain-induced piezoelectric polarization and the strain modification on material parameters are taken into account. The variations of binding energies versus the width of central barrier, the ratio of two well widths, and the impurity position are presented, respectively. It is found that the built-in electric field causes a mutation of binding energies with increasing the width of central barrier to some value. The results for symmetrical double quantum wells and without the built-in electric field are also discussed for comparison.

全文