摘要

Changes in retinal vascular morphology are well known as predictive clinical signs of many diseases such as hypertension, diabetes and so on. Computer-aid image processing and analysis for retinal vessels in fundus images are effective and efficient in clinical diagnosis instead of tedious manual labeling and measurement. An automated computational framework for retinal vascular network labeling and analysis is presented in this work. The framework includes 1) detecting and locating the optic disc; 2) tracking the vessel centerline from detected seed points and linking the breaks after tracing; 3) extracting all the retinal vascular trees and identifying all the significant points; and 4) classifying terminal points into starting points and ending points based on the information of optic disc location, and finally assigning branch order for each extracted vascular tree in the image. All the modules in the framework are fully automated. Based on the results, morphological analysis is then applied to achieve geometrical and topological features based on branching order for one individual vascular tree or for the vascular network through the retinal vascular network in the images. Validation and experiments on the public DRIVE database have demonstrated that the proposed framework is a novel approach to analyze and study the vascular network pattern, and may offer new insights to the diagnosis of retinopathy.