摘要

The location and intensity of mesocyclone circulations can be tracked in real time by accumulating azimuthal shear values over time at every location of a uniform spatial grid. Azimuthal shear at low (0-3 km AGL) and midlevels (3-6 km AGL) of the atmosphere is computed in a noise-tolerant manner by fitting the Doppler velocity observations in the neighborhood of a pulse volume to a plane and finding the slope of that plane. Rotation tracks created in this manner are contaminated by nonmeteorological signatures caused by poor velocity dealiasing, ground clutter, radar test patterns, and spurious shear values. To improve the quality of these fields for real-time use and for an accumulated multiyear climatology, new dealiasing strategies, data thresholding, and multiple hypothesis tracking (MHT) techniques have been implemented. These techniques remove nearly all nonmeteorological contaminants, resulting in much clearer rotation tracks that appear to match mesocyclone paths and intensities closely.

  • 出版日期2013-6