摘要

Microcracks and joints, two types of flaws that appear in a rock mass, affect both the rock mass strength and deformability. A model that can simultaneously reflect the effect of these two types of flaws on the mechanical behavior of a rock mass with persistent joints is not yet available. This study focusses on a microcracked rock mass with persistent joints and establishes a mechanical model, accounting for the anisotropy in the rock mass strength and deformability induced by the existence of the joints. Firstly, the compound damage variable from the coupling macroscopic and mesoscopic flaws is deduced based on the Lemaitre strain equivalence hypothesis. Secondly, the corresponding damage constitutive model for a jointed rock mass is set up. Thirdly, the joint shear failure criterion is incorporated into the constitutive model to extend the model. Finally, the results of the calculation examples show that the existence of the joint will reduce the strength, enlarge the deformability, and lead to anisotropy of the rock mass. A series of calculation examples and comparisons validate that the proposed model is capable of presenting the joint-induced anisotropy in rock mass strength and deformability, determining its possible failure modes, and reasonably simulating its complete stress-strain relationship.