摘要

Light clusters (mass number A <= 4) in nuclear matter at subsaturation densities are described using a quantum statistical approach to calculate the quasiparticle properties and abundances of light elements. I review the formalism and approximations used and extend it with respect to the treatment of continuum correlations. Virial coefficients are derived from continuum contributions to the partial densities which depend on temperature, densities, and total momentum. The Pauli blocking is modified taking correlations in the medium into account. Both effects of continuum correlations lead to an enhancement of cluster abundances in nuclear matter at higher densities. Based on calculations for A = 2, estimates for the contributions with A = 3,4 are given. The properties of light clusters and continuum correlations in dense matter are of interest for nuclear structure calculations, heavy-ion collisions, and astrophysical applications such as the formation of neutron stars in core-collapse supernovae.

  • 出版日期2015-11-3