Numerical Investigation of Actively Cooled Structures in Hypersonic Flow

作者:Brown Robert L*; Das Kaushik; Cizmas Paul G A; Whitcomb John D
来源:Journal of Aircraft, 2014, 51(5): 1522-1531.
DOI:10.2514/1.C032394

摘要

This paper presents a numerical evaluation of active-cooling thermal-protection systems in hypersonic flows. The aerothermodynamic model used herein consists of 1) an aerodynamic model based on the Reynolds-averaged Navier-Stokes equations, 2) a thermal-diffusion finite-element model, and 3) a solution methodology that couples the thermal-diffusion and aerothermal components. Hypersonic validation cases are performed on blunt-body and flat-plate geometries. A double-wedge airfoil with a rounded leading edge is simulated at speeds from Mach 3 to Mach 8 at altitudes ranging from sea level to 45 km. Coupled aerodynamic thermal analysis is performed at a speed of Mach Sat an altitude of 45 km and at a speed of Mach 8 at an altitude of 25 km with several chordwise-position-dependent cooling distributions on the interior of the airfoil. Active cooling using a piecewise continuous cooling distribution results in sufficient temperature reduction but also results in significant chordwise temperature gradients.

  • 出版日期2014-10