Brain-systemic temperature gradient is temperature-dependent in children with severe traumatic brain injury

作者:Smith Craig M*; Adelson P David; Chang Yue Fang; Brown S Danielle; Kochanek Patrick M; Clark Robert S B; Bayir Huelya; Hinchberger Jessica; Bell Michael J
来源:Pediatric Critical Care Medicine, 2011, 12(4): 449-454.
DOI:10.1097/PCC.0b013e3181f390dd

摘要

Objectives: To understand the gradient between rectal and brain temperature in children after severe traumatic brain injury. We hypothesized that the rectal temperature and brain temperature gradient will be influenced by the child's body surface area and that this relationship will persist over physiologic temperature ranges. Design: Retrospective review of a prospectively collected pediatric neurotrauma registry. Setting: Academic, university-based pediatric neurotrauma program. Patients: Consecutive children (n = 40) with severe traumatic brain injury (Glasgow coma scale of <8) who underwent brain temperature monitoring (July 2003 to December 2008) were studied after informed consent was obtained. A subset of children (n = 24) were concurrently enrolled in a randomized, controlled clinical trial of early-moderate hypothermia for neuroprotection. Interventions: Data extraction of multiple clinical variables, including demographic data, body surface area, and rectal and brain temperature at recorded at hourly intervals. Measurements and Main Results: Paired brain and rectal temperature measurements (in degrees Celsius, n = 4369) were collected hourly and compared by using Pearson correlations. Patients were stratified according to body surface area (<1.0 m(2), 1.0-1.99 m(2), 2.0-2.99 m(2), and >3.0 m(2)) and based on brain temperature (<= 34.0, 34.1-36.0; 36.1-38, >= 38.1). Body surface area and brain temperature were compared between groups by using Pearson correlations with correction for repeated measures. Mean brain temperature-rectal temperature difference was calculated for stratified brain temperature ranges. Overall, brain and rectal temperatures were highly correlated (r = .86, p < .001). During brain hyperthermia, brain temperature-rectal temperature was similar to that reported in previous studies with brain temperature higher than rectal temperature (1.75 +/- 0.4; r = .54). Surprisingly, this relationship was reversed during brain hypothermia (brain temperature-rectal temperature = -1.87 +/- 0.8; r = .37), indicating a reversal of the brain-systemic temperature gradient. When stratified for body surface area, the correlation between rectal temperature and brain temperature remained strong (r = .78, 0.91, 0.79 and 0.95, respectively, p < .001). However, the correlation between brain temperature and rectal temperature was substantially decreased when stratified for brain temperature (r = .37, 0.58, 0.48, 0.54, p < .001). In particular, during moderate brain hypothermia (brain temperature < 34), the correlation between brain temperature and rectal temperature was weakest, indicating the greatest variability during this condition which is often targeted for therapeutic trials. Conclusions: Brain temperature and rectal temperature are generally well-correlated in children with traumatic brain injury. This relationship is different at the extremes of the physiologic temperature range, with the temperature gradient reversed during brain hypothermia and hyperthermia. Given that studies showing neuroprotection from hypothermia in animal models of brain injury generally target brain temperature, our data suggest the possibility that, if brain temperature were the therapeutic target in clinical trials, this would result in somewhat higher systemic temperature and potentially fewer side effects. This relationship may be exploited in future clinical trials to maintain brain hypothermia (for neurologic protection) at slightly higher systemic temperatures (and potentially fewer systemic side effects). (Pediatr Crit Care Med 2011; 12:449-454)

  • 出版日期2011-7