摘要

This study deals with decentralized robust vibration control of a smart composite panel with parameter uncertainties. The composite panel with four collocated piezoelectric actuators and velocity sensors is modeled using finite element method, and then the size of the model is reduced in the state space using Modal Hankel Singular Value. The parameter uncertainties presented by natural frequencies and modal damping ratios are considered in controller design process. To suppress the vibration induced by external disturbance, a decentralized robust H(infinity) controller is developed using linear matrix inequality techniques. Numerical simulation for the smart panel is performed in order to investigate the effectiveness of decentralized vibration control (DVC). When the system is subjected to an initial displacement field or distributed white noise disturbance, numerical results show that the DVC system is very effective. Although there are 20% parameter uncertainties for modal frequencies, damping ratio, and control input, the decentralized controller can effectively suppress the vibration excited by the external disturbance. Furthermore, the decentralized controller composed of four three-order systems can be practically implemented well.