摘要

This work strives to model the normal spectral emissivity of aluminum 1060 during the growth of oxide layer in air over the temperatures ranging from 800 to 910 K. For this reason, the normal spectral emissivity of aluminum 1060 has been measured over a 6 h heating period at a definite temperature. In our experiment, the radiance coming from the specimen is received by an InGaAs photodiode detector, which works at 1.5 mu m with the bandwidth of 20 nm. The temperature of specimen surface is measured by averaging the two platinum-rhodium thermocouples, which are symmetrically welded in the front surface of specimen near the measuring area viewed by the detector. The strong oscillations of normal spectral emissivity have been observed and discussed, which are affirmed to be connected with the thickness of oxide layer on the specimen surface, and originate from the interference effect between the radiation coming from the oxide layer on the specimen surface and the radiation stemming from the substrate. The uncertainty of normal spectral emissivity contributed only by the surface oxidization is about 4.6-10.6%, and the corresponding uncertainty of temperature contributed only by the surface oxidization is about 3.5-8.4 K. The analytical model between the normal spectral emissivity and the heating time is evaluated at a definite temperature. A simple functional form with the exponential and logarithmic functions can be employed to reproduce well the variation of normal spectral emissivity with the heating time at a definite temperature, including the reproduction of strong oscillations.