摘要

This paper studies on the dual-channel (the traditional channel and the E-commerce channel) supply chain network design (SCND) for fresh agri-product (FAP) under information uncertainty. The model is to solve the integration network design issues about production, supply, and sales of FAP, as well as to minimize the supply chain operation cost and maximizing the satisfaction degree of the logistics demand between supply chain (SC) nodes simultaneously. First, the triangular-fuzzy-number is used to depict the information uncertainty in the SCND. Then the handling cost of wasted FAP and quantitative traceability cost of FAP are considered in addition to the regular transportation cost and fixed cost for facility location, which makes it more closely and suitable for the real case when compared with the models in existing literatures. Due to there is always a lower and upper bound for delivery time of each logistics demand node in SC in real life. This problem is then formulated as an attenuation function, for depicting the satisfaction degree in each demand node. Afterwards, the multi-objective planning method is utilized to represent the mutual trade-off among supply-chain participants. The proposed models are solved with two-phase method to guarantee the optimality of the solution. Finally, the effectiveness and applicability of the proposed models and algorithm are validated with a real case. The result shows the presented SCND models can guide relevant enterprises to make optimize decisions with fuzzy information.