Model-free chaos control based on AHGSA for a vibro-impact system

作者:Wei, Xiao-juan*; Li, Ning-zhou; Ding, Wang-cai; Zhang, Cao-hui
来源:Nonlinear Dynamics, 2018, 94(2): 845-855.
DOI:10.1007/s11071-018-4397-5

摘要

For a vibro-impact system with clearance, the model-free chaos control method based on adaptive hybrid gravitational search algorithm (or AHGSA algorithm for short) is proposed. Nonparametric time-varying dynamic linear model based on pseudo-partial-derivative is established using input/output data of the controlled system, and on this basis, the optimal controller is designed according to the quadratic performance index, and the controller parameters is optimized using AHGSA algorithm. By combining the artificial bee colony search operator and chaos optimization strategy, gravitational search algorithm (or GSA algorithm for short) is improved from three aspects (i.e., population initialization, velocity and position update, gravity coefficient adjustment) to achieve a balance between the global detection ability and the local development ability. AHGSA algorithm has good optimization accuracy and efficiency: The arbitrariness is avoided in controller parameters selection, and the quality of the chaos control is ensured as well. In simulation experiment, the model-free controller optimized is used to control the chaotic motion of a single-degree-of-freedom vibro-impact system with clearance to verify the validity and feasibility of the proposed chaos control method. The simulation results show that the control effect is good, and the proposed chaos control method has the following advantages: the proposed chaos control method does not depend on the precise model of the controlled system, and the controller is easy to be designed and implemented.