摘要

Manufactured soil for landscaping purposes was produced by composting for 6 weeks (1) municipal green waste alone, (2) green waste amended with 25% v/v poultry manure, or (3) green waste immersed in, and then removed from, a mixture of liquid grease trap waste/septage. Composting temperatures increased most rapidly and reached highest values (78A(0)C) in the grease trap/septage-amended green waste. In comparison with green waste alone, addition of poultry manure prolonged the period of elevated temperatures and increased the maximum temperature attained from 52A(0)C to 61A(0)C. Following composting, each of the materials was split into (1) 100% compost, (2) 80% compost plus 20% v/v soil, and (3) 70% compost plus 20% soil plus 10% coal fly ash. Addition of poultry manure or grease trap/septage to green waste prior to composting increased bulk density and reduced total porosity of the composted product. Addition of soil, or soil and ash, to composts increased bulk density, reduced total porosity, decreased percentage macropores, and increased percentage mesopores and available water-holding capacity. Bicarbonate-extractable P, exchangeable NH (4) (+) and NO (3) (-) , electrical conductivity (EC), soluble C, soluble C as a percentage of organic C, basal respiration, and metabolic quotient were all markedly greater in the grease trap/septage-amended than poultry manure-amended or green waste alone treatments. Values for extractable P and EC were considered large enough to be damaging to plant growth and germination index (GI) of watercress was less than 60% for all grease trap/septage composts. Extractable P and EC were also high, and GI was < 100%, in the green waste alone and poultry manure-amended green waste alone treatments. Addition of soil or soil and ash to these composts resulted in GI values > 100%.

  • 出版日期2010-3