摘要

Increased evidence from animal and in vitro cellular research indicates that the metabolism of eicosapentaenoic acid (EPA) can inhibit carcinogenesis in many cancers. Free radical-mediated peroxidation is one of many possible mechanisms to which EPA's anti-cancer activity has been attributed. However, no direct evidence has been obtained for the formation of any EPA-derived radicals. In this study, a combination of LC/ESR and LC/MS was used with -[4-pyridyl 1-oxide]-N-tert-butyl nitrone to identify the carbon-centred radicals that are formed in lipoxygenase-catalysed EPA peroxidation. Of the numerous EPA-derived radicals observed, the major products were those stemming from -scission of 5-, 15- and 18-EPA-alkoxyl radicals. By means of an internal standard in LC/MS, this study also quantified each radical adduct in all its redox forms, including an ESR-active form and two ESR-silent forms. The comprehensive profile of EPA's radical formation provides a starting point for ongoing research in defining the biological effects of radicals generated from EPA peroxidation.