摘要

Nitrogen (N) is a major factor limiting grain production in the high rainfall zone (HRZ, 450-700mm annual average rainfall of southwestern Australia (SWA). Transient waterlogging and leaching of applied N fertilizer are hazards faced in most years by crop producers. The major crops are wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), canola (Brassica napus L.) and lupin (Lupinus angustifiolius L.) grown in rotation. Two series of experiments involving, levels and timing of N fertilizer application and levels of plant population were done. The first series, in 2003-2004, consisted of 3 experiments in 3 growing seasons (early May to late-October) to measure the grain yield (GY) increase (response) of wheat and barley to various methods of N fertilizer application (methods of split N application were compared to N applied at sowing). The aim of the experiments was to determine the optimal N fertilizer application strategy for maximum GY and quality in situations where transient waterlogging was a frequent occurrence. The second series of four experiments, from 2007-2009, measured the GY of wheat sown at three levels of plant population to 4 levels of N applied after transient waterlogging (taken to be rainfall events in which >25mm of rain was recorded in 24 to 48 hours).Applying the N fertilizer after high rainfall and transient waterlogging (tactical N application) increased GY and protein percentage of grain compared to applying all of the N fertilizer at sowing. Where transient waterlogging was not frequent, applying the N after waterlogging was not always better than applying part of the N according to growth stage of the crop or according to fixed times after sowing. When the crop was water-logged three or more times, N uptake by the crop at anthesis and apparent fertilizer N recovery in the crop was substantially increased by applying the N after waterlogging compared to applying the entire N at sowing. This study found that a tactical N management strategy for the HRZ of SWA is to apply some N at sowing with subsequent applications made after heavy rainfall that leads to transient waterlogging. Split N fertilizer applied either according to time after sowing or to growth stage of the crop was equally effective for increasing GY in situations where waterlogging was less frequent.The observation from these experiments, that grain yield increases due to splitting the N dose were associated with increases in ear numbers, lead to a further set of experiments where plant population was increased in conjunction with N applied after waterlogging events. The combined strategy of increased plant population with strategic N application decreased the amount of N required for maximum GY where more than 3 heavy rainfall events occurred in a growing season.One practical outcome of this research is to indicate that farmers can withhold applications of N fertilizer after sowing in seasons when transient waterlogging does not occur.

  • 出版日期2016