摘要

A concept for a journal bearing with variable stiffness and damping properties is developed in order to decrease the vibration amplitude of a rotor-journal bearing system during passage through resonance. The introduction of an additional fluid film thickness in the bearing is proposed in this work in order to alter the dynamic properties in the bearing. The bearing ring is divided into two parts with the upper part being fixed with the housing and the lower part being flexibly mounted by a preloaded spring in parallel with a viscous damper. This allows relative motion between the two parts of the bearing ring. The relative motion introduces an additional fluid film zone in the bearing under the passive displacement of the lower part due to increased impedance forces that are developed in the lubricant film at resonance operation. The general concept is to change the system%26apos;s damping and stiffness coefficients using this extra fluid film thickness only when the system passes through its critical speed in order to quench the vibration amplitude. For rotational speeds outside of the resonant regions, the bearing is considered to be fixed in order to behave as it was designed under the nominal loading operational conditions. [DOI: 10.1115/1.4007242]

  • 出版日期2012-12