摘要

In this paper, a two-dimensional Lagrangian model based on the weakly compressible smoothed particle hydrodynamics (WCSPH) was developed to explore the hydrodynamics of standing waves impinge on a caisson breakwater. The developed model is validated against experimental data and applied then to analyze the wave horizontal velocity in front of a vertical caisson. The effect of wall steepness was investigated in terms of the steady streaming pattern due to generation of fully to partially standing waves. The numerical results indicated that the partially standing waves generated in front of the sloped caisson change the pattern of steady streaming. For the vertical caisson, the velocity component of recirculating cells increased in front of the vertical wall; whereas, for the sloped caisson it decreased from the sloped wall with reducing the wall steepness. In addition, near the milder sloped wall the intensity of velocity component is higher, which is an important parameter in scour process in front of caisson breakwater.

  • 出版日期2017-3