摘要

The central piriform cortex (cPC) is considered to be critically involved in the generation and propagation of kindled seizures. Our previous study found that low-frequency stimulation (LFS) of the cPC inhibits the development process of amygdala kindling. In this study, we determined whether unilateral LFS of the cPC had an inhibitory effect on amygdaloid-kindled seizures in Sprague-Dawley rats. When fully-kindled seizures were achieved by daily amygdala electrical stimulation (2 s train of 1 ms pulses at 60 Hz and 150-300 mu A), LFS (15 min train of 0.1 ms pulses at 1 Hz and 50-150 mu A) was applied to the ipsilateral or contralateral cPC 1 s after cessation of kindling stimulation for 10 days. LFS of the ipsilateral cPC significantly decreased the incidence of generalized seizures and seizure stage, and shortened cumulative afterdischarge duration and cumulative generalized seizure duration. LFS of the contralateral cPC also significantly decreased the expression of seizure stage, but had no appreciable effect on the generalized seizure incidence, cumulative afterdischarge duration and cumulative generalized seizure duration. On the other hand, LFS of the ipsilateral cPC significantly increased the afterdischarge threshold and further increased the differences of current intensity between afterdischarge threshold and generalized seizure threshold. Our data suggest that LFS of the cPC may be an effective method of inhibiting kindled seizures by preventing both afterdischarge generation and propagation. It provide further evidence that brain regions like the cPC, other than the seizure focus, can serve as targets for deep brain stimulation treatment of epilepsy.