摘要

This paper deals with the geometrically nonlinear dynamic analysis of functionally graded (FG) laminated composite plates integrated with a patch of active constrained layer damping (ACLD) treatment. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber reinforced composite (PFRC) material. Each layer of the substrate FG laminated composite plate is made of fiber-reinforced composite material in which the fibers are longitudinally aligned in the plane parallel to the top or bottom surface of the layer and the layer is assumed to be graded in the thickness direction by way of varying the fiber orientation angle across its thickness according to a power-law. The novelty of the present work is that, unlike the traditional laminated composite plates, the FG laminated composite plates are constructed in such a way that the continuous variation of material properties and stresses across the thickness of the plates is achieved. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla-Hughes-McTavish (GHM) method. Based on the first-order shear deformation (FSDT) theory, a finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG laminated composite plates. Both symmetric and asymmetric FG laminated composite plates are considered as the substrate plates for presenting the numerical results. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear forced vibrations of FG laminated composite plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also investigated.

  • 出版日期2009-8-7